Webinar Will Begin Momentarily

Become an Orgain Ambassador Today!

Request an Orgain Ambassador account to access our on-line sampling portal so you can share Orgain products and discount offers with your patients or clients.

healthcare.orgain.com/ambassador

Orgain.

Professional Education Series

Support. Inform. Educate. Empower.

The Physiological Connections Between Diet & Sleep and Associated Risks for Developing Chronic Diseases

TODAY'S AGENDA:

- Introduction & Housekeeping
- Speaker Introduction
- Presentation
- Q&A
- Closing

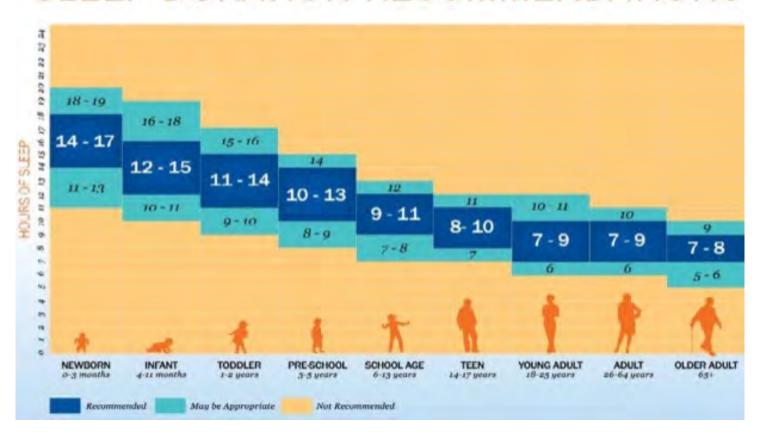
WEBINAR HOST:
Acacia Wright, RD, CD
Sr. Manager of Nutrition
Communications
Orgain, LLC

WEBINAR PRESENTER:

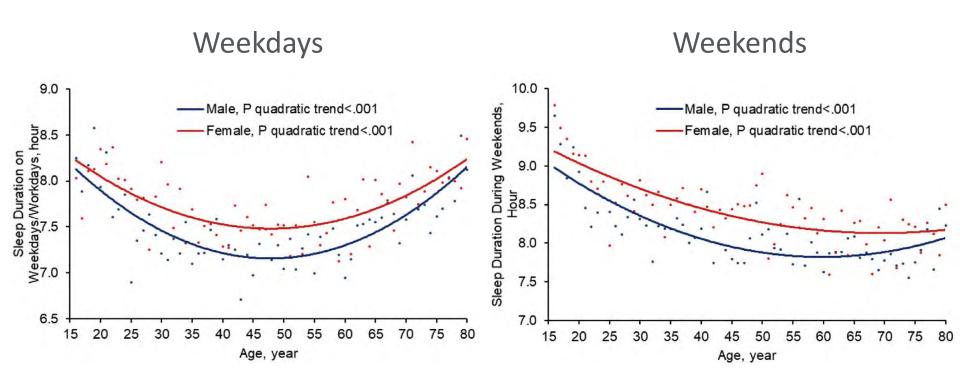
Marie-Pierre St-Onge, Ph.D, CCSH, FAHA Associate Professor of Nutritional Medicine, Director of Columbia University Irving Medical Center Sleep center of Excellence

The Physiological Connections Between Diet & Sleep: Associated Risks for Developing Chronic Diseases

Marie-Pierre St-Onge, PhD, CCSH, FAHA
Associate Professor, Division of General Medicine
Director, Center of Excellence for Sleep & Circadian Research
Department of Medicine, Columbia University Irving Medical Center

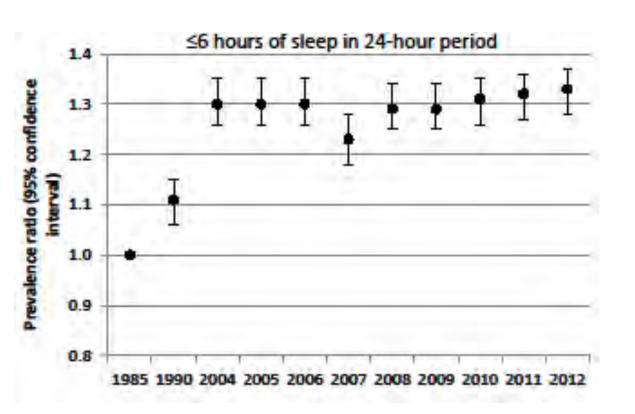


Learning Objectives


- Explain the relationships between sleep, obesity, and chronic diseases
 - Epidemiological evidence
 - Clinical intervention studies
- Describe mechanisms by which sleep influences obesity and chronic disease risk
 - Short & long-term effects of sleep restriction
 - Patterns of sleep
- Discuss influence of diet on sleep

SNATIONAL SLEEP FOUNDATION

SLEEP DURATION RECOMMENDATIONS



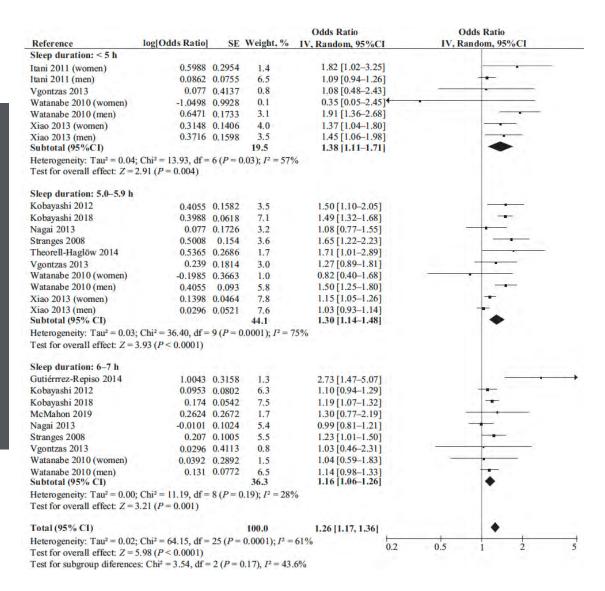
Sleep Duration in Males vs Females: Weekdays vs Weekends

In general, females report 20 minutes longer sleep than males across the lifespan & fewer report short sleep duration

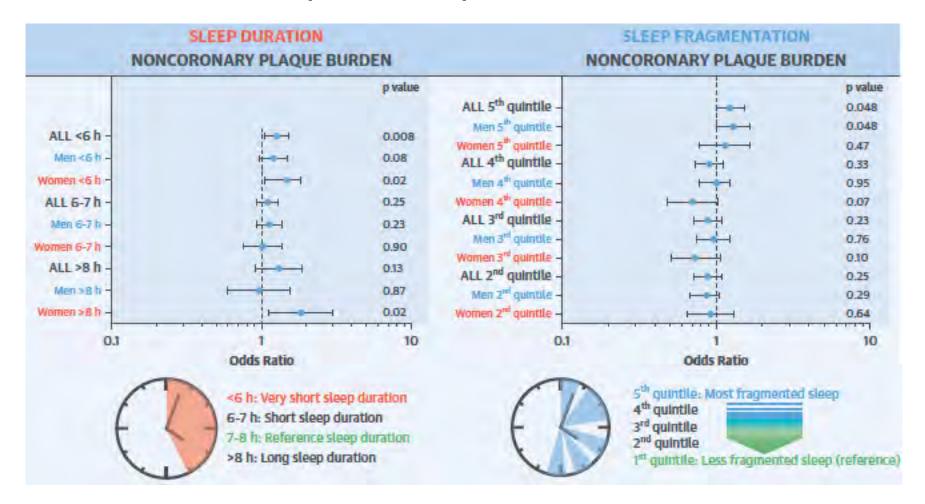
Rising prevalence of short sleep in US adults

Age-adjusted prevalence of sleeping ≤6 h/night:

• 1985: 22.3%

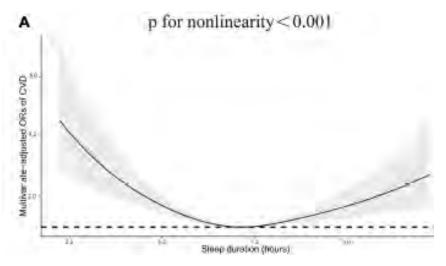

• 2012: 29.2%

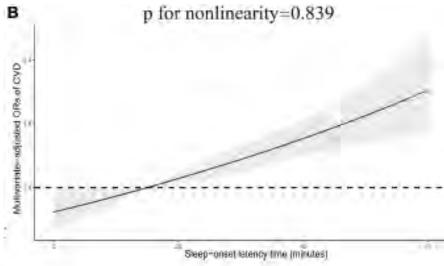
Age-adjusted prevalence of sleeping 7-8 h/night:

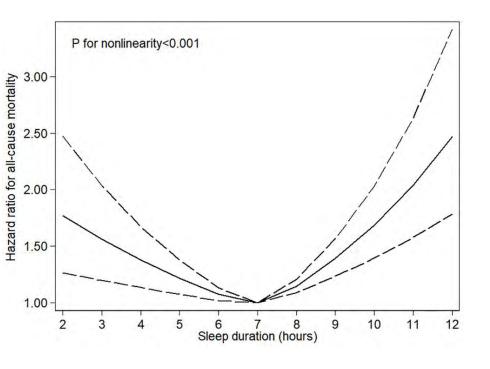

• 1985: 65.9%

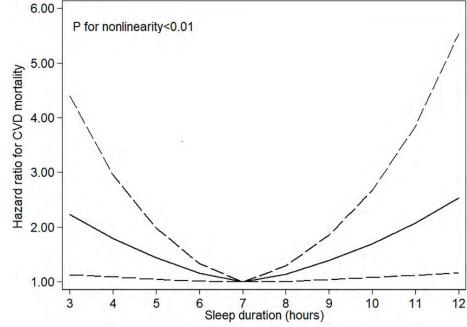
2012: 62.8%

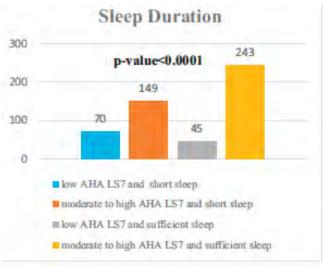
Increased odds
of developing
obesity in
short sleepers



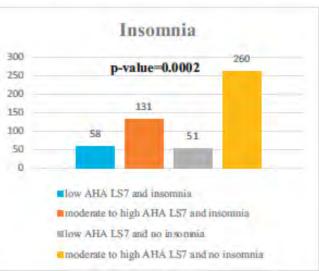

Increased subclinical atherosclerotic burden associated with poor sleep

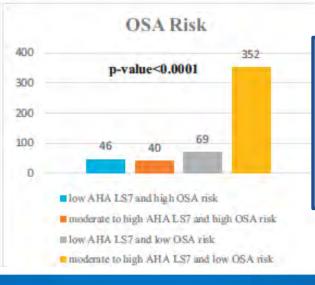

Increased odds of CVD in individuals with sleep problems: NHANES 2005-2008


	Model 1 OR (95% CI)	Model 2 OR (95% CI) P	Model 3 OR (95% CI) P
Sleep duration			
<7 vs. 7-8 h	1.57 (1.26, 1.97) ***P < 0.001	1.44 (1.16, 1.80) **P = 0.008	1.42 (1.13, 1.78) *P = 0.025
>8 vs. 7-8 h 1.54 (1.03, 2.31) *P = 0.047		1.51 (0.97, 2.33) $P = 0.092$	1.43 (0.92, 2.22) P = 0.163
Sleep-onset latence	y time		
<5 vs. 5-30 min	0.79 (0.59, 1.06) P = 0.130	0.77 (0.58, 1.03) $P = 0.108$	0.77 (0.57, 1.02) $P = 0.121$
>30 vs. 5-30 min	1.77 (1.35, 2.32) ***P < 0.001	1.57 (1.17, 2.11) *P = 0.012	1.59 (1.17, 2.15) *P = 0.025
Sleep problems			
No	Reference	Reference	Reference
Yes	1.96 (1.62, 2.38) ***P < 0.001	1.74 (1.42, 2.13) ***P < 0.001	1.75 (1.41, 2.16) **P = 0.001
OSA symptoms			
No	Reference	Reference	Reference
Yes 1.32 (1.08, 1.61) *P = 0.011		1.13 (0.91, 1.40) P = 0.303	1.12 (0.89, 1.40) P = 0.367
Daytime sleepines	s		
No	Reference	Reference	Reference
Yes	1.75 (1.44, 2.13) ***P < 0.001	1.52 (1.25, 1.85) **P = 0.001	1.54 (1.25, 1.89) **P = 0.004



Increased risk of all-cause/CVD mortality in short & long sleepers, NHANES 2005-2014





Associations between Life's Simple 7 and sleep quality in women

Women who slept ≥7 h/night have higher LS7 scores and are more likely to meet >4 metrics

EAT RIGHT

Life's

Simple 7°

keys to prevention

STOP SMOKING

LOSE WEIGHT

GET MOVING

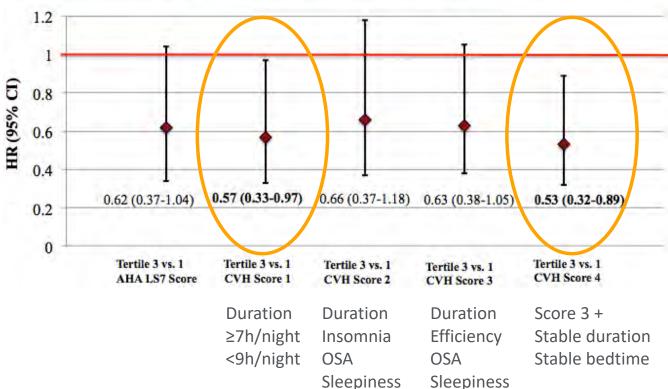
CHOLESTEROL

MANAGE BLOOD

PRESSURE

REDUCE

BLOOD SUGAR

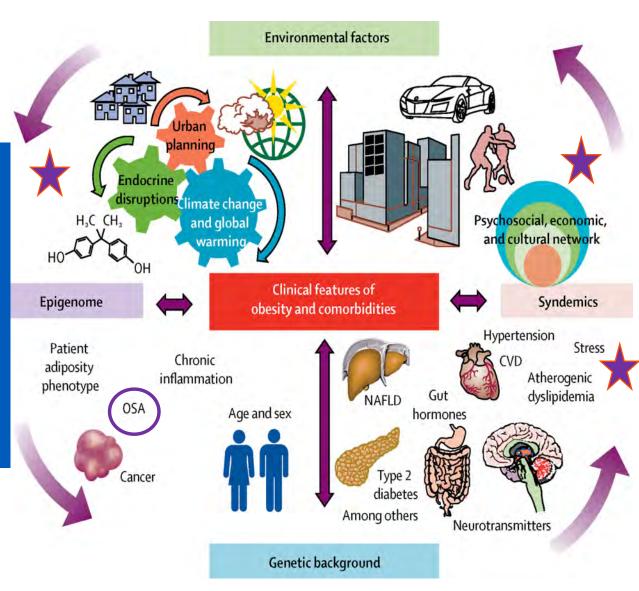

Poor sleep is associated with poor dietary intakes in women

Predictor	Outcome	B (SE)	p-value
Sleep quality	Food weight	79.6 (49.1)	0.106
(PSQI >5 vs. ≤5)	Added sugars	3.41 (1.57)	0.031
	% Unsaturated fats	-1.41 (0.50)	0.005
	Energy intake	108 (82)	0.184
Sleep onset latency (≤ 15 m vs. > 60 m)	Food weight	235.2 (79.6)	0.003
	Added sugars	2.97 (2.59)	0.252
	% Unsaturated fats	-0.95 (0.83)	0.253
	Energy intake	426 (132)	0.001
Insomnia	Food weight	116.0 (48.8)	0.018
(Yes vs. No)	Added sugars	1.87 (1.58)	0.235
	% Unsaturated fats	-1.25 (0.50)	0.013
	Energy intake	205 (81)	0.012

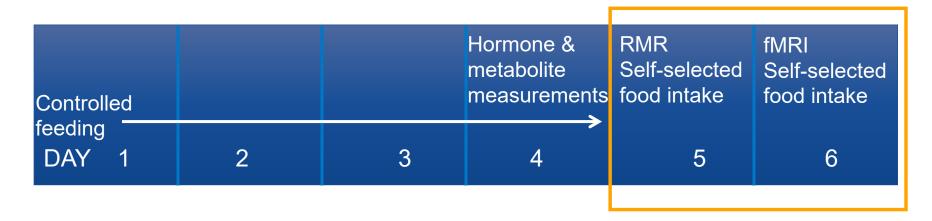
*PSQI: Pittsburg Sleep Quality Index; SOL: Sleep Onset Latency; ISI: Insomnia Severity Index **Models are adjusted for age, BMI, race/ethnicity, education, and health insurance status

Developing Life's Essential 8

Association of the AHA LS7 Score and Alternate CVH Scores that Include Sleep Metrics with CVD Incidence in Cox Proportional Hazards Models

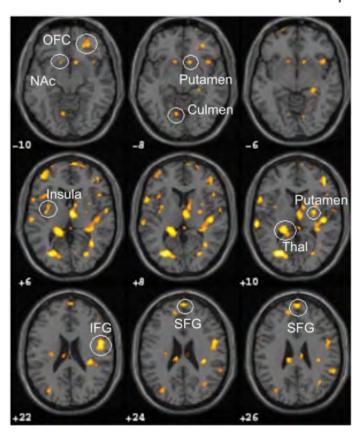


Findings from epidemiological studies


- Short sleepers have risk of obesity than adequate sleepers
- Short & disordered sleep is associated with higher CVD risk
 - Poor sleep is associated with lifestyle behaviors that predict greater CVD risk

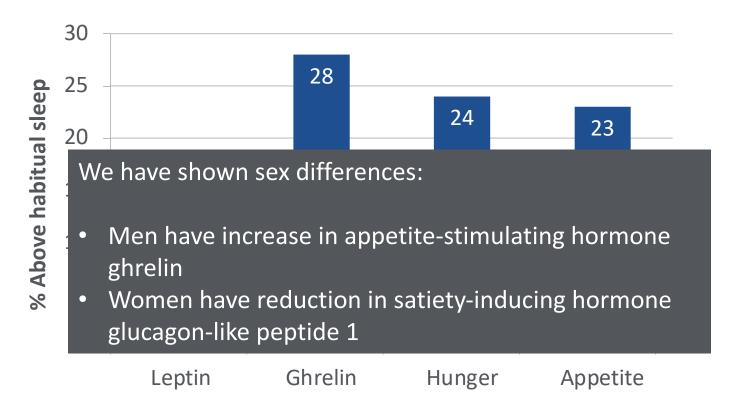
But what about causality?

Factors
influencing
risk of obesity
& its
comorbities

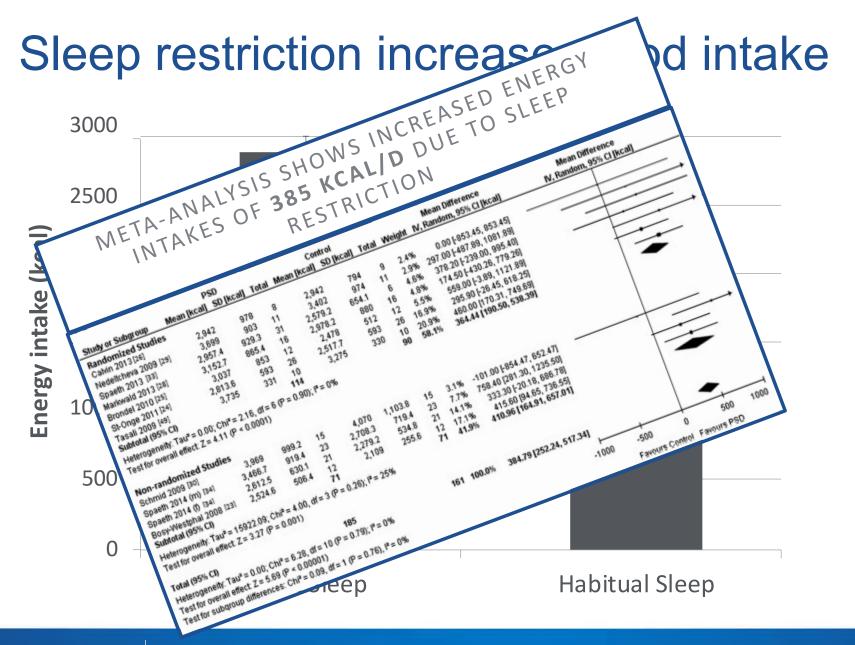

Effects of sleep restriction on energy balance & food intake regulation

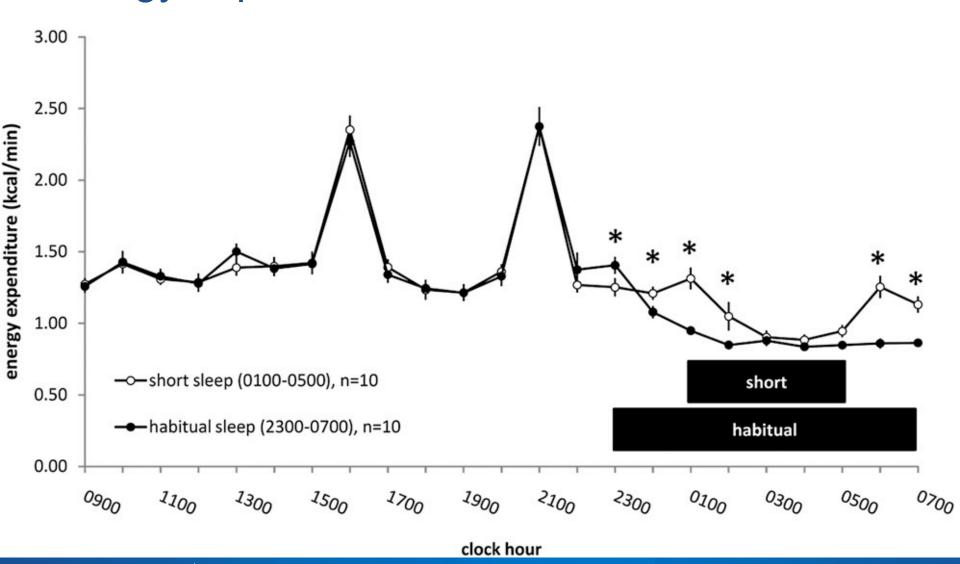
Sleep restriction alters neuronal responses to foods

Food>Nonfood Restricted Sleep

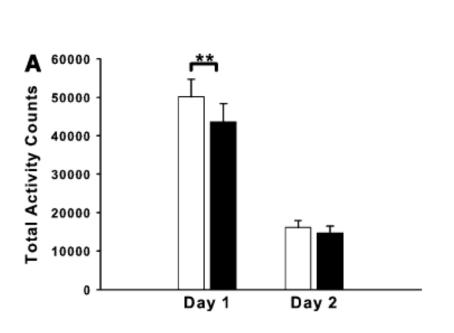

- Food stimuli increased regional brain activity in the OFC, insula, and regions of the basal ganglia and limbic system after restricted sleep
- Restricted sleep induces a state of greater responsiveness to food stimuli and heightened awareness of the rewarding properties of food

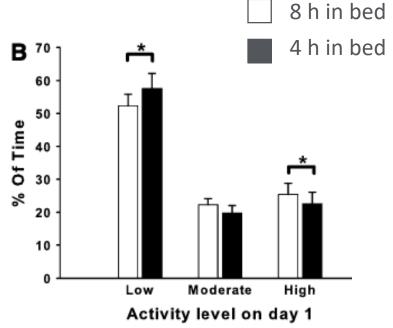
How does the brain respond to food stimuli in the sleep restricted state?


- Unhealthy foods activate the areas of the brain associated with reward and hedonic functions
 - Restricting sleep can increase salience of unhealthy food
 - Restricting sleep promotes hedonic hunger
- During habitual sleep, up-regulation of the cognitive control centers
 - Could signify improved food restraint behavior


How does sleep influence homeostatic controls of food intake?

- Increase tended to be greatest for calorie-dense high carbohydrate foods
- Increase in appetite for fruits and vegetables of lesser magnitude




Impact of sleep restriction on 24-hour energy expenditure

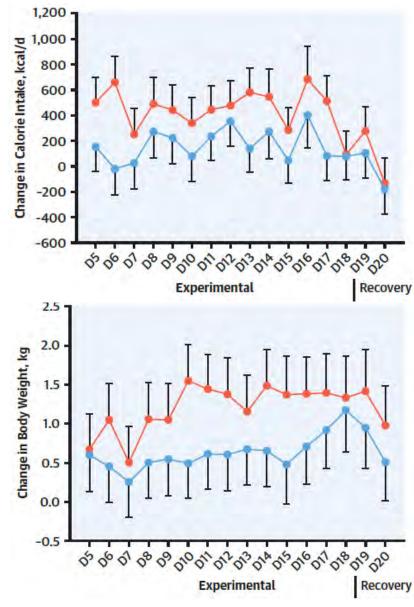
Acute sleep restriction reduces physical activity

- Men spent either 4 or 8 h in bed for 2 nights
- Energy expenditure was measured by actigraphy during outpatient (day 1) and inpatient (day 2) days

Evidence of causality: Sleep restriction

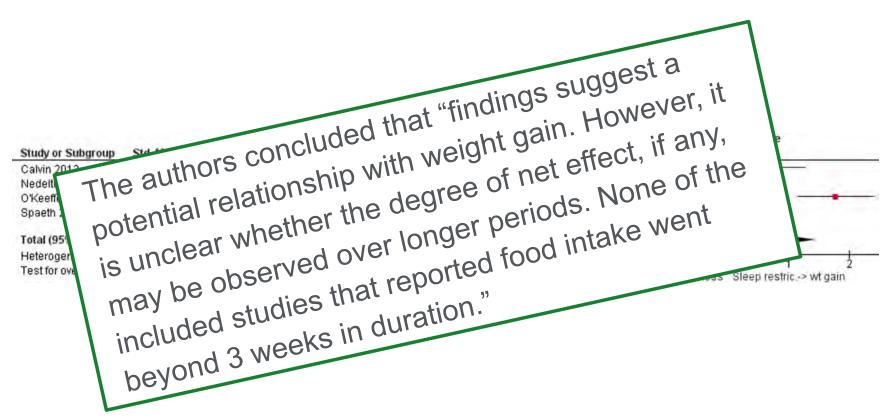
2-week inpatient intervention:

- N=12 (9 M)
- Age 26.5±5.8 y
- BMI 24.6±3.7 kg/m²
- Habitual sleep 7.4±1.0 h
 - $-SR=4.3\pm0.4$ h/night
 - -HS=8.0±0.5 h/night

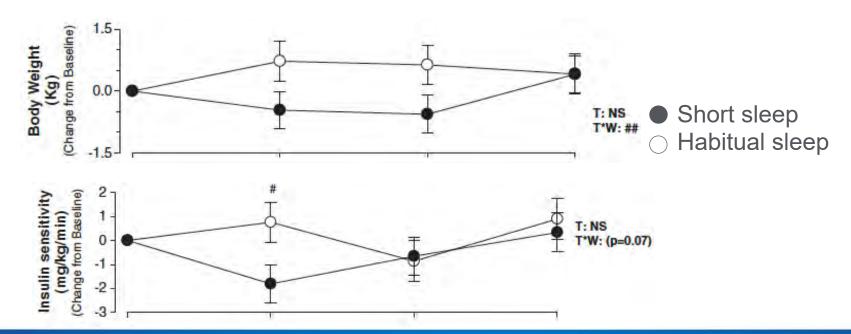

No difference in energy expenditure

Difference in energy intake between conditions:

257 kcal/d


Difference in change in body weight:

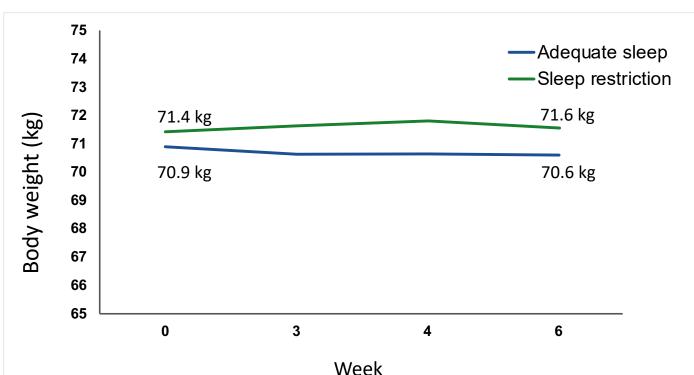
0.5 kg


Covassin et al. J Am Coll Cardiol 2022;79:1254-65

Meta-analysis of randomized clinical trials of sleep restriction: Body weight

Effect of longer, milder sleep restriction on body weight

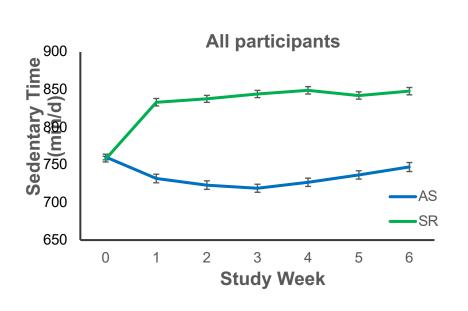
- Young, healthy males, age 20-30 y, BMI 19-26 kg/m²
- Randomized to maintain regular sleep (7-7.5 h/night) or restrict their sleep by 1.5 h for 3 weeks
 - Actual restriction 1 h:13 min-1 h:30 min

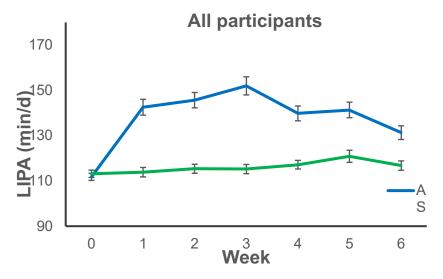


Next step: What is the impact of 'life-like' sleep restriction conditions?

- To establish if there is a causal relation between sustained, mild sleep restriction (SR) and obesity risk using a randomized crossover clinical intervention
 - 2 phases of 6 weeks with either habitual (adequate) sleep or sleep reduced by 1.5 h (delayed bedtimes)
 - Participants have adequate sleep duration, >7 h/night, at screening
 - Determine effects of SR on body weight, body composition, and other lifestyle behaviors

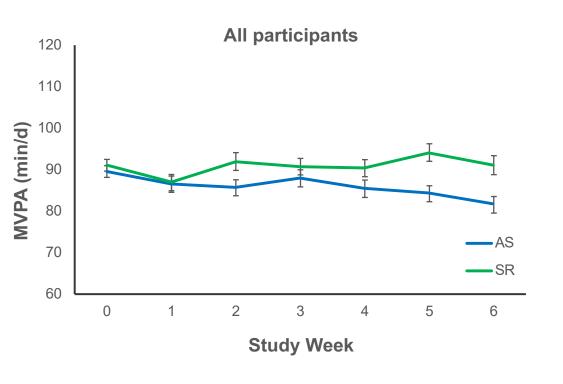
Mild Sleep Restriction Increases Body Weight


- Sleep restriction results more eating occasions and longer eating window
 - This is associated with higher energy intakes and worse diet quality

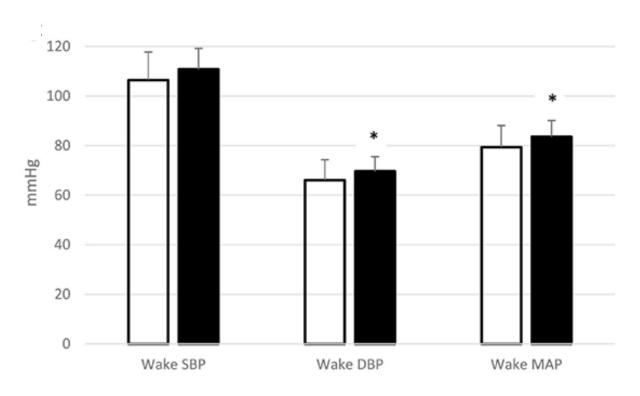


Zuraikat et al., in preparation.

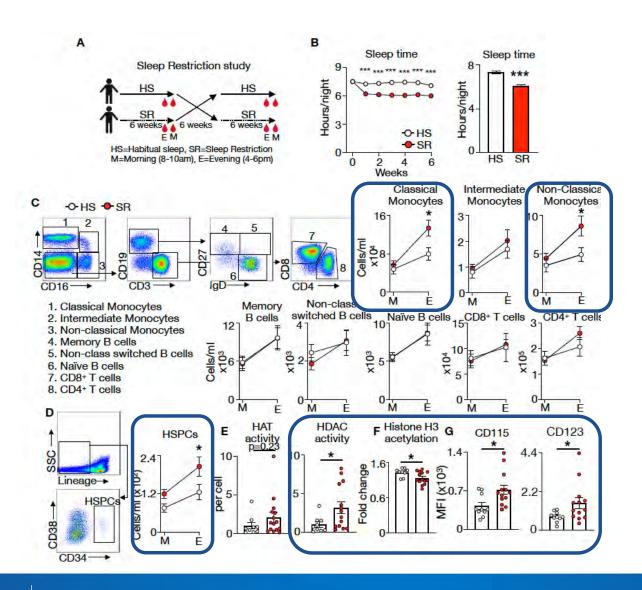
Sleep restriction increases sedentary behavior & light physical activity in men and women



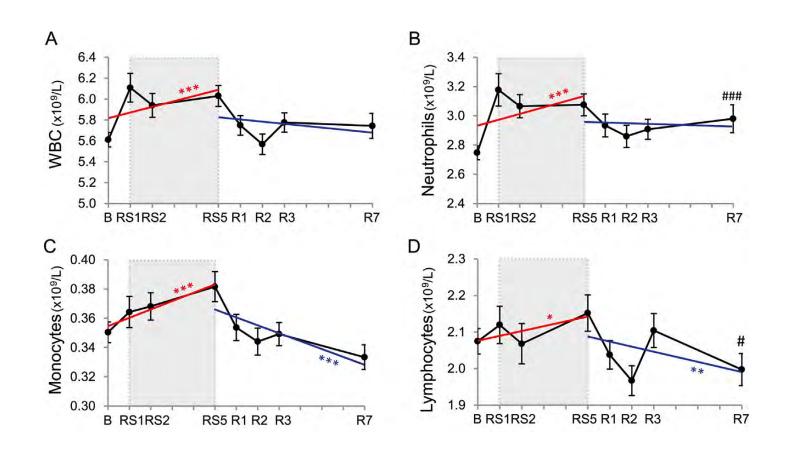
Increased by 12.5±1.1 min/d over 6 wk in SR vs AS (P<0.0001)


Increased by 1.1±0.4 min/d over 6 wk in SR relative to AS (P<0.01)

Impact of Sleep Restriction on Moderate-to-Vigorous Physical Activity in Men and Women


Increased by 1.1±0.4 min/d over 6 wk in SR relative to AS (P<0.01)

Higher blood pressure in women undergoing short sleep duration

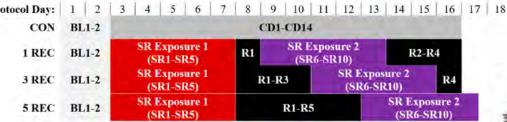


The effects of sleep restriction on 24-h systolic blood pressure were almost twice as high in post-menopausal compared to premenopausal women

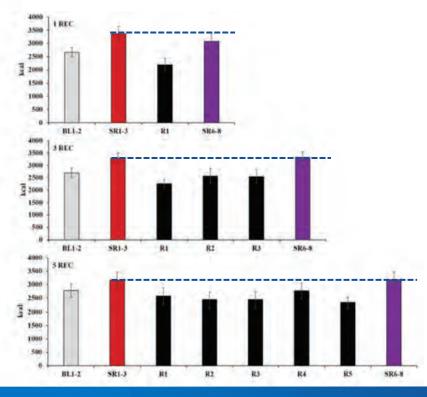
Sleep restriction increases hematopoeisis

Impact of short & catch-up sleep on cardiometabolic risk factors

Impact of short & catch-up sleep on food intake


Baseline (BL1-2, 10 h TIB/night: 22:00–08:00)

Control Condition (CD 1-14, 10 h TIB/night: 22:00–08:00)


Sleep Restriction Exposure 1 (SR1-5, 4 h TIB/night: 04:00–08:00)

Sleep Restriction Exposure 2 (SR6-10, 4 h TIB/night: 04:00–08:00)

Recovery (R1–R6, 12 h TIB: 22:00–10:00)

No evidence of acclimation from repeated exposures to sleep restriction, regardless of the number of recovery nights

Dietary intakes across different categories of sleep variability in MESA

Diet		Sleep Du	ration SD		P-value
Outcome	≤ 60 min (n=673)	61-90 min (n=529)	91-120 min (n=392)	> 120 min (n=311)	for trend
aMed Score	4.27 ± 1.82	4.08 ± 1.86	4.11 ± 1.81	4.05 ± 1.80	<0.01
Fruits	1.34 ± 0.98	1.31 ± 1.08	1.31 ± 1.08	1.28 ± 1.09	0.002
Vegetables	1.18 ± 0.85	1.17 ± 0.87	1.19 ± 0.89	1.23 ± 0.95	0.212
Whole grains	0.63 ± 0.50	0.60 ± 0.48	0.59 ± 0.49	0.56 ± 0.52	<0.001
Nuts/Seeds	0.33 ± 0.35	0.27 ± 0.34	0.26 ± 0.34	0.23 ± 0.30	<0.01
Legumes	0.15 ± 0.17	0.17 ± 0.23	0.17 ± 0.21	0.16 ± 0.23	0.802
Red meat	0.24 ± 0.19	0.22 ± 0.20	0.25 ± 0.21	0.24 ± 0.20	0.090
Fish	0.15 ± 0.15	0.16 ± 0.20	0.17 ± 0.16	0.20 ±0.20	<0.01
Alcohol	3.41 ± 9.32	3.17 ± 7.84	2.69 ± 5.60	2.70 ± 6.18	0.873
MUFA	14.33 ± 4.01	14.14 ± 3.94	14.23 ± 4.05	14.45 ± 4.04	0.358
Saturated fat	10.41 ± 3.21	10.52 ± 3.06	10.16 ± 3.18	10.60 ± 3.22	0.043
Energy intake	1692 ± 770	1688 ± 775	1735 ± 869	1778 ± 914	0.01

Diet variables energy adjusted as: servings/1000 kcal (fruits, vegetables, whole grains, nuts/seeds, legumes, red meat, fish), %kcal (MUFA, SFA), g/1000 kcal (alcohol)

High sleep variability & short sleep duration associated with reduced weight loss

- Participants in PREDIMED-Plus, a Mediterranean diet intervention with vs without caloric restriction
 - Adults, 55-75 y, with BMI 27-40 kg/m²

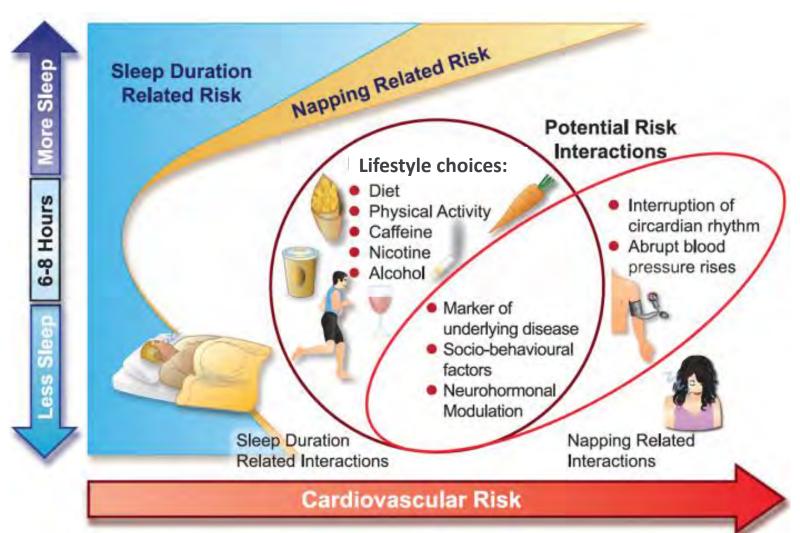
	Tertiles of sleep varia	Tertiles of sleep variability (h)					
	1 (lowest)	2	3 (highest)	p Value 2 vs 1	p Value 3 vs 1		p Valu
Weight, kg							
n	630	629	629			1888	
12-month change	-2.3 (-2.6 to -2.0)	-2.1 (-2.5 to -1.8)	-1.7 (-2.0 to -1.4)			-2.1 (-2.2 to -1.9)	
Difference vs first tertile ^a	0 (ref.)	0.1 (-0.3 to 0.5)	0.5 (0.1 to 0.9)	0.553	0.020	0.95 (0.06 to 1.8)	0.037
Difference vs first tertileb	0 (ref.)	0.1 (-0.3 to 0.6)	0.5 (0.1 to 0.9)	0.548	0.021	0.88 (-0.01 to 1.8)	0.052
Body mass index, kg/m ²							
n	628	628	627			1888	
12-month change	-0.8 (-0.9 to -0.7)	-0.8 (-0.9 to -0.6)	-0.6 (-0.7 to -0.5)		100	-0.7 (-0.8 to -0.7)	
Difference vs first tertile ^a	0 (ref.)	0.06 (-0.1 to 0.2)	0.2 (0.04 to 0.4)	0.481	0.016	0.36 (0.03 to 0.7)	0.033
Difference vs first tertileb	0 (ref.)	0.05 (-0.1 to 0.2)	0.2 (0.04 to 0.4)	0.507	0.015	0.34 (0.01 to 0.7)	0.043
Waist circumference, cm							
n	600	599	599			1888	
12-month change	-2.5 (-3.0 to -2.1)	-2.6 (-3.0 to -2.1)	-1.9 (-2.3 to -1.4)			-2.3 (-2.6 to -2.1)	
Difference vs first tertile ^a	0 (ref.)	-0.2 (-0.8 to 0.4)	0.4 (-0.1 to 1.0)	0.496	0.148	0.7 (-0.5 to 1.9)	0.247
Difference vs first tertileb	0 (ref.)	-0.1 (-0.7 to 0.4)	0.4 (-0.2 to 1.0)	0.536	0.156	0.6 (-0.6 to 1.7)	0.345

Sleep stability & body composition

N=36 women

Age ≥20 y

BMI 20-33 kg/m²


Habitual sleep ≥7 h/night

Undergoing 6-wk period of maintained adequate sleep with prescribed bed and wake times based on usual habits

Grouped by change in bedtime variability from screening

Variable	Increased/same bedtime variability $(N = 8)$	Reduced bedtime variability $(N=29)$	P value*
Age, years	36.9±15.0	34,4±11.8	0.621
Race			0.663
White	5 (63)	14 (48)	
Other	3 (37)	15 (52)	
Baseline weight, kg	62.2 ± 5.0	66.5 ± 7.8	0.153
Baseline BMI, kg/m ²	23.5 ± 2.1	25.1 ± 3.0	0.190
Baseline sleep duration, min	453.3 ± 29.3	455.2 ± 30.2	0.875
Baseline bedtime	12:00 a.m.	10:48 p.m.	0.109
Baseline bedtime SD, min	49.7±9.5	57.2 ±27.4	0.218
Weight change, kg	0.48±1.19	-0.66 ± 1.37	0.059
TAT change, La	0.63 ± 0.41	-0.52 ± 0.98	< 0.001
VAT change, L	0.05 ± 0.17	-0.03 ± 0.10	0.297
SAT change, L	0.56 ± 0.31	-0.48 ± 0.86	< 0.001
WBV no lungs change, L	0.23 ± 0.91	-0.75 ± 0.90	0.016
IMAT change, L	0.03 ± 0.03	-0.01 ± 0.12	0.134
SM change, L	-0.08 ± 0.49	-0.19 ± 0.47	0.602
Leukocyte platelet aggregates, % ^b	8.42±16.59	-8.42 ± 10.82	0.011

Sleep is Integral to Good Lifestyle Habits Compatible With Cardiovascular Health

Food intake during a controlled diet vs ad lib diet when sleep is sufficient

Nutrient content	Controlled diet	Ad lib diet
Energy, kcal	2055	2518
Protein, %En	17	14
Carbohydrates, %En	53	54.6
Fat, %En	31	32.7
Saturated fat, %En	7.5	10

Sleep after a controlled diet vs ad lib diet

Sleep parameter	Controlled diet	Ad lib diet	P- value
Total sleep time, min	453.5 ± 44.4	455.1 ± 30.2	0.86
Stage 1, min	52.3 ± 21.8	56.2 ± 18.8	0.18
Stage 2, min	240.3 ± 42. 9	245.8 ± 35.5	0.45
Slow wave sleep, min	29.3 ± 13.9	24.6 ± 12.8	0.043
Rapid-eye movement sleep, min	91.6 ± 17.8	96.4 ± 18.2	0.19
Sleep onset latency, min	16.9 ± 11.1	29.2 ± 23.1	0.0085
Arousals	143.2 ± 52.1	143.4 ± 51.9	0.98

Relation between diet and sleep after a day of ad lib intakes

Sleep parameter	Fiber, g	Sugar, %En	Non-sugar/non- fiber CHO, %En	Saturated fat, %En
Stage 1, % sleep time	-0.19 ± 0.07	0.08 ± 0.17	0.04 ± 0.03	0.03 ± 0.21
Slow wave sleep, % sleep time	0.26 ± 0.11	-0.18 ± 0.25	-0.04 ± 0.04	-0.71 ± 0.32
Arousals	-0.11 ± 0.81	4.34 ± 1.86	0.66 ± 0.31	2.17 ± 2.40

Data suggest that a high-fiber diet, with low intake of sugars, is associated with better sleep depth and architecture

Could diet improve sleep in those with sleep disorders??

Adherence to Mediterranean Diet associated with sleep quality at 1 y

Predictor	Outcome	β (SE) b	p-Value	β (SE) c	p-Value
	PSQI total score	-0.30 (0.10)	< 0.01	-0.31 (0.08)	< 0.0001
aMed diet	Sleep onset latency	-0.61 (0.65)	0.35	-0.71(0.59)	0.23
score	Sleep efficiency	1.20 (0.35)	< 0.001	1.21 (0.33)	< 0.001
	Sleep disturbances	-0.30 (0.12)	0.01	-0.35 (0.10)	< 0.001
- No No.	PSQI total score	-0.16 (0.07)	0.02	-0.19 (0.05)	< 0.001
Fruits and	Sleep onset latency	-0.41 (0.44)	0.36	-0.31(0.40)	0.44
vegetables	Sleep efficiency	0.56 (0.24)	0.02	0.52 (0.22)	0.02
200000	Sleep disturbances	-0.18 (0.08)	0.03	-0.15 (0.07)	0.02
	PSQI total score	-0.10 (0.16)	0.55	-0.24 (0.13)	0.06
Legumes	Sleep onset latency	-1.13(1.03)	0.27	-1.21(0.94)	0.20
Leguines	Sleep efficiency	1.36 (0.55)	0.01	1.46 (0.52)	< 0.01
1.0	Sleep disturbances	0.17 (0.19)	0.39	-0.08 (0.16)	0.62
	PSQI total score	0.01 (0.21)	0.96	0.02 (0.17)	0.92
Nuts	Sleep onset latency	0.09 (1.35)	0.95	0.25 (1.23)	0.84
Nuts	Sleep efficiency	-0.47(0.72)	0.51	-0.36(0.68)	0.60
	Sleep disturbances	-0.26 (0.25)	0.31	-0.09(0.20)	0.65
	PSQI total score	-0.68 (0.39)	0.08	-0.55 (0.30)	0.07
D. delen de	Sleep onset latency	-0.94(2.48)	0.71	-1.09(2.26)	0.63
Dark breads	Sleep efficiency	2.07 (1.33)	0.12	1.96 (1.26)	0.12
	Sleep disturbances	-0.43(0.47)	0.36	-0.67(0.38)	0.08

Odds ratio for associations between Mediterranean diet score and sleep: MESA Exam 5

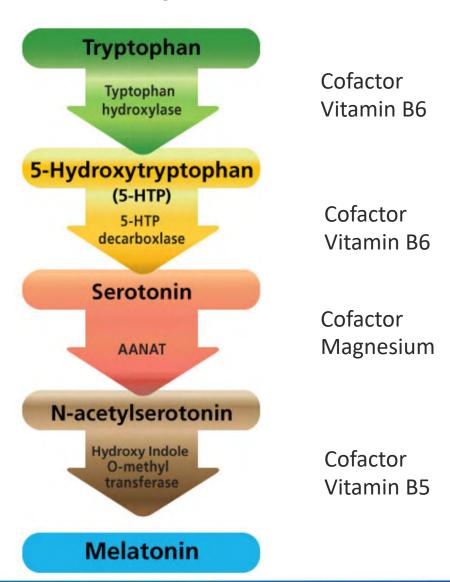
Alternate	Sleep duration	Sleep duration	Sleep duration	Insomnia
Mediterranean	6-7 h/night vs	7-8 h/night vs	>8 h/night vs	Symptoms vs
Diet Score	<6 h/night	<6 h/night	<6 h/night	None
Moderate-High Score Model 1 Model 2 Model 3 Model 4	1.30 (1.03-1.63) 1.32 (1.05-1.66) 1.38 (1.07-1.78) 1.43 (1.08-1.88)	1.05 (0.82-1.34) 1.05 (0.82-1.34) 1.05 (0.80-1.38) 1.05 (0.78-1.40)	0.83 (0.60-1.14) 0.84 (0.61-1.16) 0.97 (0.68-1.40) 0.95 (0.64-1.42)	0.81 (0.67-0.97) 0.81 (0.68-0.98) 0.82 (0.67-1.00) 0.85 (0.68-1.06)

Model 1 is adjusted for age, sex, race/ethnicity

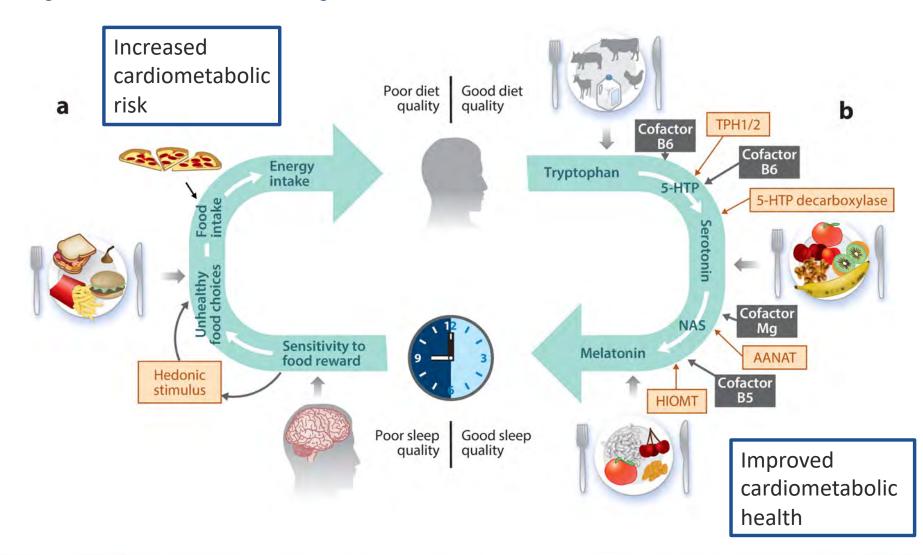
Model 2 is additionally adjusted for education

Model 3 is additionally adjusted for cigarette smoking, intentional exercise, and total energy intake Model 4 is additionally adjusted for BMI, hypertension, diabetes, depressive symptoms, AHI, anti-depressant and anti-psychotic medications, insomnia symptoms or sleep duration

Odds ratio for associations between change in Mediterranean diet score and sleep: MESA Exams 1 & 5


Alternate Mediterranean Diet Score	Sleep duration 6-7 h/night vs <6 h/night	Sleep duration 7-8 h/night vs <6 h/night	Sleep duration >8 h/night vs <6 h/night	Insomnia Symptoms vs None
No change vs decrease Model 1 Model 2 Model 3 Model 4	1.05 (0.77-1.45) 1.07 (0.78-1.47) 1.04 (0.74-1.45) 0.98 (0.68-1.40)	1.11 (0.79-1.54) 1.10 (0.79-1.54) 1.13 (0.80-1.60) 1.06 (0.73-1.55)	1.08 (0.71-1.65) 1.09 (0.71-1.68) 1.13 (0.72-1.80) 0.96 (0.57-1.61)	0.64 (0.49-0.83) 0.64 (0.49-0.83) 0.65 (0.50-0.85) 0.61 (0.45-0.82)
Increase vs decrease Model 1 Model 2 Model 3 Model 4	1.35 (1.04-1.75) 1.36 (1.05-1.76) 1.30 (0.99-1.71) 1.34 (0.99-1.80)	1.30 (0.98-1.71) 1.29 (0.98-1.71) 1.26 (0.94-1.69) 1.30 (0.95-1.79)	1.04 (0.72-1.50) 1.04 (0.72-1.50) 1.18 (0.80-1.75) 1.15 (0.74-1.77)	0.90 (0.73-1.11) 0.90 (0.73-1.11) 0.90 (0.72-1.12) 0.92 (0.72-1.17)

Biological plausibility for diet impact on


sleep

Tryptophan:

- Essential amino acid
- Primary substrate for melatonin synthesis
- Carbohydrates and gut microbiome involved in Trp metabolism
- Various dietary nutrients involved in enzymatic conversions of Trp to melatonin

Cycles of lifestyle behaviors & health

Thank you!

RAs & Fellows:

- Faris Zuraikat, PhD
- Rocio Barragan-Arnal, PhD
- Amy Roberts, Ph.D
- Ayanna Campbell, MS
- Ismel Salazar, MS
- Justin Cochran, MS
- Samantha Scaccia, MS
- Many IHN MS Students

Collaborators:

- Brooke Aggarwal, EdD
- Sanja Jelic, MD
- Blandine Laferrère, MD
- Ari Shechter, Ph.D

Funding:

- R01HL091352
- R01HL128226
- R01HL155670
- AHA 16SFRN27950012
- NYONRC DK-26687
- CTSA ULRR000041

Thank you for joining us today.

Become an Orgain Ambassador Today!

Request an Orgain Ambassador account to access our on-line sampling portal so you can share Orgain products and discount offers with your patients or clients.

healthcare.orgain.com/ambassador

Professional Education Series

Support. Inform. Educate. Empower.

WEBINAR HOST:

Acacia Wright, RD, CD Sr. Manager of Nutrition Communications Orgain, LLC

Acacia.Wright@orgain.com

WEBINAR PRESENTER:

Marie-Pierre St-Onge, Ph.D, CCSH, FAHA Associate Professor of Nutritional Medicine, Director of Columbia University Irving Medical Center Sleep Center of Excellence

ms2554@cumc.columbia.edu

GENERAL INQUIRIES:

medinfo@orgain.com